Prediction of Sulfur Removal from Iron Concentrate Using Column Flotation Froth Features: Comparison of k-Means Clustering, Regression, Backpropagation Neural Network, and Convolutional Neural Network

نویسندگان

چکیده

Froth feature extraction plays a significant role in the monitoring and control of flotation process. Image-based soft sensors have received great deal interest process due to their low-cost non-intrusive properties. This study proposes data-driven sensor models based on froth images predict key performance indicators The ability multiple linear regression (MLR), backpropagation neural network (BPNN), k-means clustering algorithm, convolutional (CNN) amount sulfur removal from iron ore concentrate column was examined. A total 99 experimental results were used develop predictive models. Extracted features including color, bubble shape size, texture, stability, velocity train traditional models, whereas CNN model directly fed into model. comparison indicated that three-layered feedforward NN (17-10-1 topology) provided better predictions than MLR algorithm. BPNN displayed correlation coefficient 0.97 root mean square error 4.84% between actual data output for both training testing datasets. percentages CNN, BPNN, 10, 11, 15 18%, respectively. can become technical support application intelligent operational variables desulfurize concentrate.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network

today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...

ESTIMATION OF GAS HOLDUP AND INPUT POWER IN FROTH FLOTATION USING ARTIFICIAL NEURAL NETWORK

Multivariable regression and artificial neural network procedures were used to modeling of the input power and gas holdup of flotation. The stepwise nonlinear equations have shown greater accuracy than linear ones where they can predict input power, and gas holdup with the correlation coefficients of 0.79 thereby 0.51 in the linear, and R2=0.88 versus 0.52 in the non linear, respectively. ...

متن کامل

Distillation Column Identification Using Artificial Neural Network

  Abstract: In this paper, Artificial Neural Network (ANN) was used for modeling the nonlinear structure of a debutanizer column in a refinery gas process plant. The actual input-output data of the system were measured in order to be used for system identification based on root mean square error (RMSE) minimization approach. It was shown that the designed recurrent neural network is able to pr...

متن کامل

Learning Document Image Features With SqueezeNet Convolutional Neural Network

The classification of various document images is considered an important step towards building a modern digital library or office automation system. Convolutional Neural Network (CNN) classifiers trained with backpropagation are considered to be the current state of the art model for this task. However, there are two major drawbacks for these classifiers: the huge computational power demand for...

متن کامل

Prediction of ultimate strength of shale using artificial neural network

A rock failure criterion is very important for prediction of the ultimate strength in rock mechanics and geotechnics; it is determined for rock mechanics studies in mining, civil, and oil wellborn drilling operations. Also shales are among the most difficult to treat formations. Therefore, in this research work, using the artificial neural network (ANN), a model was built to predict the ultimat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Minerals

سال: 2022

ISSN: ['2075-163X']

DOI: https://doi.org/10.3390/min12111434